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Abstrset. We study a piecewise linear version of an activator-inhibitor model with the 
aim of analysing the effect of albedo boundary conditions on the formation and stability of 
patterns. We find concentration profiles for both components and analyse the linear 
stability propperties of those profiles. We show that it is possible, under certain wn- 
ditions, to control the shape and the stabiMy of the patterns. Also, a scaling behaviour on 
the marginal stability line has been found. 

Pattern formation and propagation is one of the main issues in the physics of complex 
systems [l]. Among the several frameworks in which these phenomena can be 
described, the reaction-diffusion approach has provided a very fertile source of 
models, for instance, in the description of chemical clocks (e.g. the 
Belousov-Zhabotinski reaction), the propagation of neural signals along the axonal 
membrane, temporally periodic or spatially organized activity in heart tissue, etc. 
[2-51. In particular, the possibility of a solitary pattern without propagation in an 
infinite medium was established [ti]. 

We shall investigate the effect of different boundary conditions on the possibility 
of existence and stability of patterns in systems defined on a finite one-dimensional 
space. For a one-component system, the boundary conditions have been shown 
recently to play a relevant role on the formation and stability of pattems [7]. In the 
two-component case to be analysed here we shall impose albedo boundary conditions 
(that is, a linear combination of Dirichlet and Neumann conditions) along the lines of 
a recently studied model for an electrothermal instability [8]. As was indicated in [8], 
the choice of Neumann or Dirichlet boundary conditions, physically corresponds to 
complete reflection or absorption at the boundary, respectively. The more realistic 
case of partially reflecting (or partially absorbing) boundaries, is adequately taken 
into account by the albedo boundary conditions. In the present analysis, we restrict 
ourselves to the symmetric case, that is when the albedo parameter is the same for 
both fields. We then perform a standard h e a r  stability analysis which is implemented 
numerically. The specific model which we shall concentrate upon belongs to a family 
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of multicomponent models with a broad range of applicability 191. This is the so-called 
propagator-controller or activator-inhibitor model, whose general formulation reads 

H S Wio et a[ 

a aa 
- x(z, t) = Dx7 X +  F(X, Y) at az 

where X and Y are the concentration fields of both species, 0, and Dy are their 
respective diffusion coefficients and F(X, Y), G(X,  Y) represent the reaction sources. 
The nullclines, that is the intersections of those (generally nonlinear) source terms 
with the ( X ,  Y) plane show characteristic shapes which can be described, typically, by 
a convex line for G and a general cubic-like one (with two extrema and one inflection 
point) for F [lo]. Those projections intersect each other at the origin (which counts for 
a trivial solution) and eventually on both sides around the local maximum of F. Those 
extra intersections pre-announce non-trivial solutions of the system and have been 
analysed by several authors on a simplified (piecewise linear) version of the model 
[lo]. Those authors imposed straightforward Neumann boundary conditions for the 
inilinite system and found stable solutions which behave, under certain conditions, as 
self-confined stationary patterns in an infinite system. We are interested in finite 
geometries where it is legitimate to ask for other (more general) types of boundary 
conditions, namely the albedo ones. 

We start with the simplified version of the FitzHugh-Nagumo model alluded to 
above and lix the parameters so as to allow for non-trivial solutions to exist. After 
rescaling the fields in a standard manner [6],  we get a dimensionless version of the 
model as 

a az  
at az 
- X ( z ,  t) = D, 7 X - X -  a Y  + yO(X-X,) 

a a2 
at y az 
- Y(z, t )  = D 7 Y + b X -  CY. 

We confine the system to the interval -zL<z<zL and impose the albedo 
boundary conditions as 

Note that, in the symmetric case, we are considering here, there is a unique albedo 
parameter which varies from 0 to m (these limits correspond to pure Neumann and 
pure Dirichlet boundary conditions, respectively). We shall work on a dimensionless 
spatial coordinate, scaled with the size of the system (dL) and, as we are going to 
propose spatially even solutions, we shall only study positive values of z,,. As was 
already discussed for the one-component system 171, different analytical forms (which 
are here linear combinations of hyperbolic functions) should be proposed for X and Y 
depending on whether X > X .  or X<X. .  These forms, as well as their first derivatives, 
will have to be matched at the spatial location of the transition point, which we have 
called z,. Through that matching procedure we get the general solution for the 
stationary case. A typical form for those solutions is depicted in figure 1. In order to 
identify the matching point z, we have to solve X(z,)=X, .  This results in an implicit 
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Figure 1. Typical forms for the activator (X) and inhibitor (Y) fields, for the values of the 
parameters: X,=O.3, ZL=3 and k = 2 . 5 .  The cases indicated with subindex n and b 
correspond to matching coordinates Z/ZL=0.92685 (stable) and ZJZL=0.21851 (un- 
stable), respectively. 

equation for z, and k. In figure 2 we show some general features of the solutions of 
that implicit equation for different values of X,. The range of k shown in figure 2 
includes positive as well as negative values. Whereas the positive values of k have a 
clear physical meaning, this does not rule out the possibility of situations which could 
be described by a negative k (for instance, when there is an active external medium). 
However, we will focus our discussion on positive values of k. Analogously to the 
results of [SI we find several branches, which for large values of k tend to the solutions 
corresponding to Dirichlet boundary conditions. It is worth remarking, as is clearly 
seen in figure 2, that the Dirichlet limit is attained regardless of the sign of k. For 
k=O, we obtain the solutions corresponding to Neumann boundary conditions. 
Similarly to the discussion in [SI, for intermediate (positive) values of k there appears 
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Figure 2. Matching mordinate Zc in units of Z,, for positive and negative values of k 
( - 2 < k < 3 ) .  Here ZL=3 and the curves correspond to different values of the threshold 
parameter X,: (1) X,=0.35909, (2) . . =0.35825, (3) . .=0.35712. (4) . .=0.356, 
(5 )  I .=0.35, (6) .=0.325, (7) . .=O.W, (8) . .=0.25. The arrow indicates a zone 
with a coalescence of curves. 
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Figure 3. Matchw wordinate Z, in units of Z,, for an enlargement of figure 2, for 
-0.3<k<0.6. Here also ZL=3, and the values of X, are indicated in the figure. 

an upper and a lower branch, at least for small enough X,. However, in the present 
case and due to the interplay of the activator and inhibitor fields, a richer structure 
arises. For instance, in an enlargement of what is shown in figure 2 for the range 
0.1 < k < 0.9 we can see that by varying the threshold value X ,  of the activator field, a 
transition occurs from a monotonous behaviour of z, for X, large enough, to an 
S-shaped curve below Xc=0.32. This S-like feature recedes towards the region of 
negative k as X, becomes smaller. Another very important feature present in figure 2 
is shown in detail in figure 4 namely, the formation of a neck due to the coalescence of 
the upper and lower branches, resembling a fission-like behaviour. Both aspects are 
new features of the problem under study which were not present in the one- 
component system previously discussed [SI. it isclear that, when considering different 
albedo parameters, the complexity of the solutions and the richness of the behaviour 
in the space (zc, k,, k,) will increase. 

OL I I 
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Figure 4. Matching wordinate Z. in units of Z,, for 1.0<k<2.5, with ZL=3, and 
different values of the threshold parameter X.: (1) X.=0.35656, (2) ..=0.35700, 
(3) . .=0.35712, (4) . .=0.35768, (5) . .=0.35825. The marginal srubiliry line is also 
indicated. 
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At this point we can ask ourselves about the stability of the solutions so far found. 
As stated at the beginning, we have done a standard linear stability analysis which was 
numerically implemented. In contrast with the onesomponent case, it is far from 
trivial (since the detailed balance condition is not fulfilled) to find a Lyapunov-like 
functional describing the global stability of the patterns. Similarly to the findings of 
[8], the branches lying above the marginal-stability line determined by the vertices of 
the curves as shown in figure 4 correspond to stable stationary solutions whereas those 
below it are unstable, including the S-shaped branches shown in figure 3. By means of 
a numerical analysis, we have found that, on thestability line, the pair of values (k, 2.) 
scale as X,  and X:”, respectively. A more detailed analysis of this scaling will be done 
elsewhere 1111. 

Aside from the solutions considered here, that is, a symmetric pattern consisting in 
a central region where the activator field is above a certain threshold ( X > X , )  and two 
lateral regions where it is below it ( X C X J  there are other possibilities, e.g. solutions 
with alternating regions where X > X ,  and X<X, .  We expect, according to our 
experience with the one-component case [SI, that this kind of solution will be 
unstable. However, the analysis of these solutions, as well as the stability of the 
solutions corresponding to negative values of k, together with the study of the more 
general case where the albedo parameters are different for each field, will be discussed 
elsewhere [HI. The interest of the latter case arise from the (realistic) situations 
where the boundary has different reflectivities for each field (for instance, assume 
there is a membrane at the boundary, having different porosities for each chemical 
reactive). A possibility that could arise for given albedo parameters, is that the 
stationary pattern solution for one of the fields is stable, when considered indepen- 
dently, meanwhile the other is unstable. In such a case we can witness the situation 
where the unstable pattern is stabilized by the stable one, or vice versa, the stable one 
is destabilized by the unstable one. The occurrence of such cases is of interest in 
several physical, chemical and biological systems. 
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